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Continuous Thermodynamics of Polymer 
Solutions: The Effect of Polydispersity on the 
Liquid-Liquid Equilibrium 

MARGIT T. G T Z S C H  and HORST KEHLEN 

Chemistry Department 
"Carl Schorlemmer" Technical University 
DDR-42 Merseburg, German Democratic Republic 

A B S T R A C T  

Owing to  their very large number, the composition of polymers 
is usually described by continuous distribution functions. A ver-  
sion of thermodynamics-called continuous thermodynamics-is 
established which is based directly on a continuous distribution 
function instead of the mole fractions, weight fractions, etc. of 
individual components or pseudocomponents. This continuous 
thermodynamics is applicable to all complex multicomponent 
systems such as petroleum, coal-derived liquids, tars,  and poly- 
mers.  Continuous thermodynamics is used in this paper for treat-  
ing the influence of polymer polydispersity on the liquid-liquid 
equilibrium of polymer solutions. From a practical point of view, 
the main advantages of continuous thermodynamics in comparison 
with the pseudocomponent method are fewer convergence prob- 
lems  and a drastic reduction of computer time. 
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324 RATZSCH AND KEHLEN 

I N T R O D U C T I O N  

The composition of synthetic polymers is usually characterized by 
a continuous distribution function of the molar mass M. Thermo- 
dynamics i s  used to consider phase separation. However, thermo- 
dynamics i s  based on individual components. If we split the continu- 
ous distribution into the true polymer species, a number of compo- 
nents much too large for  the numerical management of the thermo- 
dynamic equations i s  obtained. Thus, for  thermodynamic treatment, 
the continuous distribution is  usually split into an arbitrari ly chosen 
number of pseudocomponents. 

This method is shown in Fig. 1. The real polymer species a r e  
represented by many small  bars. The area of each bar indicates the 
amount of the corresponding polymer species. The upper ends of the 
bars  form the real discontinuous distribution function W (M). The 
smoothed approximation of Wdis(M) shown in the left-hand side of 

dis 
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FIG. 1. True polymer species: Continuous distribution function 
(a) and pseudocomponent approach (b). 
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CONTINUOUS THERMODYNAMICS OF POLYMER SOLUTIONS 325 

the figure is the continuous distribution function W (M) which may 
be determined experimentally by fractionation o r  gel permeation 
chromatography. The pseudocomponent approach shown in the right- 
hand side of the figure consists of uniting a number of neighboring 
polymer species to a pseudocomponent. The corresponding distribu- 
tion is represented by a small  number of broad ba r s  and, thus, the 
function Wpseud(M) exhibits relatively large deviations from the real 
discontinuous distribution function W (M). Therefore, the pseudo- 
component approach i s  a relatively crude method. 

Thus, it is desirable to use  the continuous distribution function 
directly-without splitting into pseudocomponents-as the basis for  
thermodynamic treatment. Suggestions for  applying a continuous 
description within the framework of thermodynamics were published 
by three groups of authors. The f i rs t  group used continuous distribu- 

cont 
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FIG. 1 (continued) 
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326 RATZSCH AND I(EHLEN 

tion functions mainly for  treating problems of statistical mechanics 
and nonequilibrium thermodynamics. Thus, Onsager [ 11 described 
the orientational distribution of liquid crystals by a continuous func- 
tion. Prigogine and Mazur [2] applied a continuous description f o r  
treating internal degrees of freedom. Vrij  [3] and Blum and Stell [4] 
discussed scattering phenomena on this basis. Gal-Or et al. [5] sug- 
gested the use  of the moments of a distribution as independent thermo- 
dynamic variables. Dickinson [6] applied a continuous description 
within conformal solution theory. The second group of authors (e.g., 
Katz and Brown [ T I ,  Bowman [8  , Edmister [g], Hoffman [lo, 111 
Aris  and Gavalas [12], Roth ,131, Koningsveld and Staverman [141, 
and Solc [15] ) introduced a continuous description in considering 
phase equilibria for  multicomponent systems. The authors of this 
group restricted themselves to specific cases (e.g., Raoult's law) 
and did not consider the general fundamentals of the problems. How- 
ever, by applying a continuous distribution function instead of mole 
fractions, etc. of individual components, it i s  possible to establish 
a consistent version of the total building of thermodynamics as pre- 
sented by the third group of authors (Kehlen and Ratzsch [IS], Sala- 
cuse and Stell [ 171, Gualtieri et al. [ 181, Briano and Glandt [ 191 ). 
This building i s  called "continuous thermodynamics." It permits a 
concise treatment of all complex multicomponent systems. 

liquid equilibrium of polydisperse polymer solutions. To illustrate, 
the phase separation in an ethylene + polyethylene mixture is cal- 
culat ed. 

In this paper, continuous thermodynamics i s  applied to  the liquid- 

T H E R M O D Y N A M I C  BAC KGR OU ND 

We consider a solution of solvent A and polymer B. The composi- 
tion of the polymer is described by the distribution function W(M). 
This function is defined in such a way that W(M) dM gives the seg- 
ment fraction of all polymer species with molar masses  between M 
and M + dM divided by the total segment fraction + of all polymer 
species. 

In traditional thermodynamics, the condition for  equilibrium be- 
tween two phases ' and l l  may be expressed by the chemical potentials 

where 1, . . . , w indicates the different discrete polymer species. In 
continuous thermodynamics, instead of Eq. (1) we obtain 
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CONTINUOUS THERMODYNAMICS OF POLYMER SOLUTIONS 327 

Here the phase equilibrium condition for the polymer holds for all 
continuous polymer species within the molar mass interval occurring 

0 from Mo up to M . Instead of the discrete index i, the continuous 
characterization variable M occurs. 

In traditional thermodynamics, the chemical potentials may be 
written a s  follows: 

(3) 
rA 

= pA*(T,P) + RT [In (1 - rc/) + 1 - + rA RT In A 
r 

r 

(4) 
Bi pBi = p B i * ( ~ , p )  + RT [In Q~ + 1 - -1 + r RT In r 

i r Ri Bi - 

The f i rs t  term is  the chemical potential of the pure species, the 
second term is  the well-known Flory-Huggins contribution, and the 
last  term describes the deviation from a Flory-Huggins mixture. 
The quantities FA and TBi' named segment molar activity coefficients, 

are introduced for this reason. The symbols rA and r a r e  the seg- 

ment numbers of the species indicated, F is  the corresponding mean 
value for the phase considered, and GB i s  the segment fraction for 

the polymer species Bi. In the continuous case, instead of Eq. (4) 
we write 

Bi 

i 

The mean r may be calculated by 
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328 RATZSCH AND KEHLEN 

Introducing Eqs. (3) and (5) into Eq. (2), we obtain, after r e -  
arranging, 

1 - $1' = (1 - +?) exp (PA' - PAT) (7) 

The f i rs t  equation results from the phase equilibrium condition for  
solvent A and i s  an equation for  a scalar  quantity (e.g., T, P, +?, * I 1 ) .  

The second equation results from the phase equilibrium condition for  
polymer B. Thus, it i s  valid fo r  all M values within the molar mass  
interval occurring and permits the calculation of an  unknown distribu- 
tion function (e.g., W"(M) if W'(M) i s  known). The abbreviations 
pA and pB are given by 

' = 1 1 1  
9 

(10) MS 
pB' = +' (1 --) - 

MB 
B 

Here we use rB(M)/rA = M/MS where M is the molar mass  of one 

polymer segment and aB is the mean value of the molar mass  of 
the polymer in phase a. 

The segment molar activity coefficients F A  and 7 B  may be calcu- 

lated according to the well-known model theories based on statistical 
mechanics such as Huggins' X-parameter concept, the UNIFAC model, 
or  the Flory-Oywoll-Vyij theory. As  long as we t reat  polymers and 
not oligomers, ? may be assumed to  be independent of W(M) 

and, furthermore, y B  and pB may be considered to be independent of 

M. The reason-is that endgroup_effect_s may be neglected in this case. 
Thus, we have yA = yA(T, P, +); 7 = B(T, P, +). According to  Hug- 

gins' x-parameter concept, in the simplest case we obtain 

S a .  

and r A -  B 

- - 
(11) 

2 
; rA In y B  = ~ ( 1  - x = x (T,P) 

2 rA In ?A = xlc/ ; 
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CONTINUOUS THERMODYNAMICS OF POLYMER SOLUTIONS 329 

C L O U D - P O I N T  C U R V E  A N D  SHADOW C U R V E  

We assume the composition of phase (i.e., $I and W'(M)) and the 
pressure P to be specified. Thus, we wish to calculate the composi- 
tion of the coexisting phase I' (i.e., $ I 1  and W"(M)) and the equilibrium 
temperature T. This corresponds to the problem of the cloud-point 
curve and the shadow curve. 

The distribution function W"(M) i s  immediately given by Eq. - (8). 
In this relation, three unknown scalar  quantities occur: $", MBll, and 

T. Thus, we need three scalar  equations. One of them i s  given by Eq. 
(7). The two others result f rom the normalization condition for  W"(M) 
and from the definition of RBT1 (compare Eq. 6). Applying Eq. (8), 
these equations read 

The solution of this system of three equations leads to the cloud-point 
curve T($l) and to the shadow curve T(IC/"). In performing the calcula- 
tion, R,'' may be eliminated according to Eqs. (7) and (9). 

The integrals in Eqs. (12) and (13) are usually calculated numeri- 
cally. However, if W'(M) i s  a Schulz-Flory distribution (Mo = 0, 

M = a), 0 

kk+l 

MB1 r (k + 1) 
W'(M) = - (14) 

any integrations occurring may be performEd analytically. The param- 
e te rs  in Eq. (14) are k and the mean value MB' of the molar mass  in 

phase I. Under the presumption WB'(pB' - p,")/(MSk) < 1, we obtain 
from Eqs. (12) and (13) 
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resulting in 
vt J/' 

This symmetric equation does not depend on the real behavior of the 
coexisting phases but only on the presumption of a Schulz-Flory dis- 
tribution. According to the symmetric relation (16), the distribution 
function W"(NI) in the phase I t  is also a Schulz-Flory distribution. It 
is characterized by the same value of k and by the mean value mB" 
which may be calculated from mB1 by Eq. (16). 

bination of some Schulz-Flory distributions. 
Similarly, analytic integrability is found if W'(M) is a linear com- 

C O E X I S T E N C E  C U R V E S  

A feed phase F splits into two coexisting phases and I t .  In this 
case, the material balances also have to be accounted for. If $ is the 
total amount of segments in phase I '  divided by the total amount of 
segments in the feed, the mass balance for the polymer species in 
continuous thermodynamics is 

(17) 
F F  I,!/ W (M) = ( 1  - +) +'W'(M) + + +C"W''(M) 

By dividing by M and integration, we obtain 

$F = (1 - $)I,!/! + q)qc/" 

+F *I *'? - -  - (1  -$): + +: 
MBtl MB M B t  

- F  

F F In addition to the composition of the feed (i.e., $ and W (M)), we 
assume T and P (or P and + or T and +) to be specified. The other 
variables a r e  the unknowns. Applying Eqs. (17)-( 19), the quantities 
referring to phase may be eliminated. Thus, the problem reduces 
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CONTINUOUS THERMODYNAMICS OF POLYMER SOLUTIONS 33 1 

to calculation of the unknown distribution function W"(M) and the un- 
known scalars  qff, aB1', and 4 (or T o r  P). By combining Eqs. (8) 

and (17) we obtain 
F F  + w (MI 

W"(M) = (20) 

This relation permits the calculation of the unknown distribution 
function if we know the scalar unknowns. These may be calculated 
from 

1 - lg 
1 - 911 = (21) 

4 + (1 - 4) exp [ -bA' - PA")] 

Relations (21)-(23) result from Eqs. (7), (18), (19), and (20) by ap- 
plying arguments similar to those leading to Eqs. (12) and (13). The 
quantities referring to phase may easily be calculated from Eqs. 
(17)-(19) o r  by applying the equations for  phase which a r e  analogous 
to EqS. (20)-(23). 

E X A M P L E  

As an  example, consider a solution of polydisperse polyethylene 
wax in supercritical ethylene for different pressures at  a tempera- 
ture  of 403.15 K. The model theory by Flory, Orwoll, and Vrij [20] 
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332 RATZSCH AND KEHLEN 

P 
MPa 
- 

100 

80 

60 

I 
I 

T 
0 0.2 0.4 0.6 y 

FIG. 2. Coexistence curve in the system ethylene + polyethylene 

at T = 403.15 K f o r  GF = 0.168. 

- - 
is used to  calculate FA and 5 B. The parameter  XAB may be fitted to  
some experimental cloud-point curve data, leading t o  XAB = -8.61 

MPa. The polyethylene wax can be characterized by a Wesslau distri-  
bution 

where M* = 3880 g/mol and p = 1.362. The calculated coexistence 

curves for  a feed composition $'F = 0.168 are shown in Fig. 2. The 
corresponding means of the molar m a s s  and the $-values can be seen  
f rom Fig. 3. Finally, Fig. 4 gives the distribution functions fo r  phase 
separation at 70.91 MPa. 
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FIG. 3. Mean values of the molar mass  H in the coexisting phases B 
and amount 
ethylene a t  T = 403.15 K for lC/F = 0.168. 

of the polymer-rich phase in the system ethylene + poly- 

0.5 

- 0 
0 5 000 - M 10 000 

g rno1-l 

FIG. 4. Mass distribution functions in the system ethylene + poly- 

ethylene a t  T = 403.15 K for qF = 0.168 and P = 70.91 MPa. To demon- 
F F  s t ra te  the mass balance, the products $ W (M), (1 - I#I)+'W'(M), and 

$+"W"(M) a r e  plotted. 
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334 R ~ T Z S C H  AND KEHLEN 

In comparison to  the usual pseudocomponent approach, calculations 
on the basis of continuous thermodynamics require only 10 to 20% of 
the usual computer time. Furthermore,  fewer convergence difficulties 
occur if continuous thermodynamics i s  applied. 
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